A hybrid block GMRES method for nonsymmetric systems with multiple right-hand sides
نویسنده
چکیده
The block GMRES (BGMRES) method is a natural generalization of the GMRES algorithm for solving large nonsymmetric systems with multiple right-hand sides. Unfortunately, its cost increases significantly per iteration, frequently rendering the method impractical. In this paper we propose a hybrid block GMRES method which offers significant performance improvements over BGMRES. This method uses the matrix polynomial obtained in the course of a BGMRES step and combines the advantages of the block approach with those of successful hybrid methods. We discuss the properties and several implementation variants of the method and report results from numerical experiments. We also describe how to use these techniques in order to solve multiply shifted systems with multiple right-hand sides.
منابع مشابه
Product Hybrid Block GMRES for Nonsymmetrical Linear Systems with Multiple Right-hand Sides
Recently, the complementary behavior of restarted GMRES has been studied. We observed that successive cycles of restarted block BGMRES (BGMRES(m,s)) can also complement one another harmoniously in reducing the iterative residual. In the present paper, this characterization of BGMRES(m,s) is exploited to form a hybrid block iterative scheme. In particular, a product hybrid block GMRES algorithm ...
متن کاملBlock Bidiagonalization Methods for Solving Nonsymmetric Linear Systems with Multiple Right-hand Sides
Many applications require the solution of large nonsymmetric linear systems with multiple right-hand sides. Instead of applying an iterative method to each of these systems individually, it is often more eecient to use a block version of the method that generates iterates for all the systems simultaneously. In this paper, we propose block versions of Galerkin/minimal residual pair of bidiagonal...
متن کاملRestarted Block Gmres with Deflation of Eigenvalues
Block-GMRES is an iterative method for solving nonsymmetric systems of linear equations with multiple right-hand sides. Restarting may be needed, due to orthogonalization expense or limited storage. We discuss how restarting affects convergence and the role small eigenvalues play. Then a version of restarted block-GMRES that deflates eigenvalues is presented. It is demonstrated that deflation c...
متن کاملConvergence Properties of Block GMRES and Matrix PolynomialsV
This paper studies convergence properties of the block gmres algorithm when applied to nonsymmetric systems with multiple right-hand sides. A convergence theory is developed based on a representation of the method using matrix-valued polynomials. Relations between the roots of the residual polynomial for block gmres and the matrix "-pseudospectrum are derived, and illustrated with numerical exp...
متن کاملConvergence Properties of Block GMRES and Matrix Polynomials
This paper studies convergence properties of the block GMRES algorithm when applied to nonsymmetric systems with multiple right-hand sides. A convergence theory is developed based on a representation of the method using matrix-valued polynomials. Relations between the roots of the residual polynomial for block GMHES and the matrix &-pseudospectrum are derived, and illustrated with numerical exp...
متن کامل